Network coding and cyclic convolutional codes

Fai Lung Tsang (HKUST, CUHK-INC) *join work with* Wai Ho Mow (HKUST)

24-11-2010

Network coding and cyclic convolutional codes

Outline:

- a. Introduction: Koetter-Kschischang "subspace" network coding
- b. Our generalization
- c. Cyclic convolutional codes and NC

Say, input: $v_{e_1} = (1, 0, 0)$, $v_{e_2} = (0, 1, 0)$. The output vector v_f depending on the choice of **Local encoding coefficients:** k's.

In an <u>unknown</u> (or <u>random</u>) network, without regard to the underlying topology, the output ℓ 's are linear combinations of the input vectors m_i 's.

a. K-Ks subspace NC

• Linear relation:
$$(\ell_1, \ldots, \ell_r)^T = G(m_1, \ldots, m_n)^T$$
.

- "There is *no* assumption here that the network operates synchronously or without delay or that the network is acyclic."
- They proposed:

INPUT=X, a space generated by m's, OUTPUT=Y, a space generated by ℓ 's.

a. K-Ks subspace NC (Cont.)

```
Start with a large vector space, say M = \mathbb{F}^N.
Let P(M) be the collection of all subspaces of M.
A code C is a subset of P(M).
INPUT: X, as a set of generators of X.
OUTPUT: Y, the space generated by observable outputs \ell's.
```

If there is no errors, we must have $Y \subset X$. If there is error, they modelled it as $Y = H_k(X) \oplus E$, here $k = \dim(X \cap Y)$ and H_k is an operator randomly choosing a k-dimensional subspace of X.

There is a distance concept in P(M): $d(U,V) := \dim(U+V) - \dim(U \cap V)$, d makes P(M) into a metric space.

a. K-Ks subspace NC (Cont.)

Comparison:

	Block code	Subspace NC
Code	$\mathcal{C} \subset \mathbb{F}^N$	$\mathcal{C} \subset P(\mathbb{F}^N)$
Codeword	x vector	X vector space
Metric	d(x,y) Hamming	d(U,V)

a. \rightarrow b. Why generalize?

Some questions on Koetter-Kschischang's subspace NC framework:

- 1. What is the meaning of injecting vector spaces?
- 2. Really no assumption on delayness and cyclicity?
- 3. Is the model $Y = H_k(X) \oplus E$ sensible?

a. \rightarrow b. 1. What is the meaning of injecting vector spaces?

Let X be a space injected using its generators $\{m_1, \ldots, m_n\}$ (dim $X \leq n$). Since the network is noncoherent, the matrix G may or may not be of full rank.

If G has full rank, Y = X

 \rightarrow no problem.

If G has deficient rank, $\dim(Y) \leq \min(rank(G), \dim(X))$

 \longrightarrow even different injection order affects dim(Y), i.e., d(Y, X) varies.

Note: in no error case

 $d(Y,X) = \dim(Y+X) - \dim(Y \cap X) = \dim X - \dim Y.$

One needs to address the relationship between allowable rank loss ("erasure") and $d_{\mathcal{C}}$ when designing a code \mathcal{C} .

a. \rightarrow b. 2. No assumption needed on delayness and cyclicity?

We adopt the assumptions:

- If no delays, we do not allow cycles.
- Cycles must come with delays.
- c.f., theory of convolutional codes.

a. \rightarrow b. 3. Is the model $Y = H_k(X) \oplus E$ sensible?

Let m_1, \ldots, m_n be the inputs which generates X. The observable outputs are ℓ'_1, \ldots, ℓ'_r , where

 $\ell_i' = \ell_i + \epsilon_i , \quad \ell_i \in X$

and ϵ_i represents the error (maybe 0). Y is generated by $\{\ell'_i\}$.

$$X = \mathbb{F}(m_1, \dots, m_n),$$

$$Y = \mathbb{F}(\ell'_1, \dots, \ell'_r) = \mathbb{F}(\ell_1 + \epsilon_1, \dots, \ell_r + \epsilon_r).$$

It may happen that dim $Y \cap X = 0$ or k = 0, hence Y = E. Do we really want to model "error" and "erasure" in this way? [Certainly we think there are better interpretations.]

b. Generalization.

Ingredients:

M a finitely generated free R module with R a principal ideal domain.

"finitely generated free": $M \approx R^N$ "domain": $a \cdot b = 0$ in R implies a = 0 or b = 0"ideal": $I \subset R$ is an ideal if I is a subring and that $z \in I$ implies $a \cdot z \in I$ for all $a \in R$. "subring": I is a subring if $a - b \in I$ for all $a, b \in I$.

Examples of (M, R): $(\mathbb{F}^N, \mathbb{F}) \leftarrow$ acyclic networks with no delay. $(\mathbb{Z}^N, \mathbb{Z})$ $(\mathbb{F}[z]^N, \mathbb{F}[z]) \leftarrow$ acyclic networks with delays. $(\mathbb{F}[(z)]^N, \mathbb{F}[(z)]) \leftarrow$ cyclic networks with delays (**Li-Sun**). $(A[z; \sigma], \mathbb{F}[z]) \leftarrow$ cyclic convolutional codes.

b. Generalization. (Cont.)

Admissible codewords: P(M) collection of all <u>saturated</u> submodules in M. A code C is a subset of P(M).

"saturated": X is a saturated submodule of M if $0 \neq a \cdot x \in X \Rightarrow x \in X.$ Equivalent def.: if $X \oplus J = M$ for some $J \subset M$.

d a metric on
$$P(M)$$
:
 $d(X,Y) := rank(X) + rank(Y) - 2 \cdot rank(X \cap Y)$
(can prove) = $rank(X + Y) - rank(X \cap Y)$.

"rank(X)" is the cardinality of a basis of X.

b. Our answers

Let m_1, \ldots, m_n generate X (INPUT). Observable outputs are ℓ'_1, \ldots, ℓ'_r that generate Y (OUTPUT). $\ell'_i = \ell_i + \epsilon_i$, here $\ell_i \in X$, ϵ_i is error. Let $Y_0 := R(\ell_1, \ldots, \ell_r)$ and $E = R(\epsilon_1, \ldots, \epsilon_r)$.

If all $\epsilon_i = 0$ (no errors), then $Y = Y_0 \subset X$. In other cases, $Y \subset Y_0 + E$.

"rank loss" = $rank(X) - rank(Y_0)$ "error" = rank(E).

Theorem. Let C be a code with minimal distance $d_{\mathcal{C}}$. Then rank loss $+ 2 \cdot \operatorname{error} < d_{\mathcal{C}}/2$ implies $d(Y, X) < d_{\mathcal{C}}/2$.

c. Cyclic convolutional codes and NC

Let $R = \mathbb{F}[z]$ a polynomial ring. $M = A[z; \sigma]$ a skew polynomial ring which is also a f.g. free module over R.

 $A = \mathbb{F} \times \cdots \times \mathbb{F}$ (*N*-copies), *A* has *primitive idempotents* e_1, \ldots, e_N . $A = \mathbb{F} e_1 + \cdots + \mathbb{F} e_N$. [If you like, you may think of $e_1 = (1, 0, \ldots)$.]

 $\sigma: A \to A$ automorphism which fixes \mathbb{F} such that $\sigma(e_i) = e_{i+1}$ and $\sigma(e_N) = e_1$.

Elements in M are polynomials $a_0 + a_1 z + \ldots + a_s z^s$.

Multiplication of z follows the rule: $za = \sigma(a)z$. Hence $z(a_0 + a_1z + ... + a_sz^s) = \sigma(a_0)z + ... + \sigma(a_s)z^{s+1}$.

c. Cyclic convolutional codes and NC (Cont.)

Some facts:

- $\cdot \ M \approx R^N.$
- · All elements in P(M) are called *cyclic convolutional codes*.
- · All elements in P(M) are principal left *M*-ideal, i.e., X = Mg.
- · Rank of an element in P(M) is easily calculated, namely,
 - if $g = g_0 + g_1 z + \dots$ then $rank(X) = \#\{i | g_0 e_i \neq 0\}$
- $\cdot d(X,Y)$ easily estimated, thus ease code design.

Further problems

1. Exists other metrics?

[Injection metric]

2. Constructions of cyclic convolutional codes for NC?

[We have a simple construction]

3. Simulation results?

References

R. Koetter and F. R. Kschischang. *Coding for errors and erasures in random network coding*. IEEE-IT 2008.

S.-Y. R. Li and Q. T. Sun. *Network coding theory via commutative algebra*. To appear in IEEE-IT.

Graphic tool: http://latexdraw.sourceforge.net/