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Network coding and cyclic convolutional codes

Outline:

a. Introduction: Koetter-Kschischang “subspace” network cod-
ing

b. Our generalization

c. Cyclic convolutional codes and NC
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Say, input: ve; = (1,0,0), ve, = (0,1,0).
T he output vector o depending on the choice of
Local encoding coefficients: k’'s.



mim? mMn

e
—
e

l |

E]_ Er

In an unknown (or random) network, without regard to the un-
derlying topology, the output ¢'s are linear combinations of the
input vectors m;'s.




a. K-Ks subspace NC
e Linear relation: (41,...,4)1 =G(m1,...,mn)t.

e ‘"Thereis noassumption here that the network operates syn-
chronously or without delay or that the network is acyclic.”

e [ hey proposed:
INPUT=X, a space generated by m's,
OUTPUT=Y, a space generated by /¢'s.



a. K-Ks subspace NC (Cont.)

Start with a large vector space, say M = V.

Let P(M) be the collection of all subspaces of M.

A code C is a subset of P(M).

INPUT: X, as a set of generators of X.

OUTPUT: Y, the space generated by observable outputs ¢'s.

If there is no errors, we must have Y C X.

If there is error, they modelled it as Y = Hp(X) & E, here
k = dim(X NY) and Hi is an operator randomly choosing a
k-dimensional subspace of X.

There is a distance concept in P(M):
d(U, V) =dim(U+ V) —-dim(UnNYV),
d makes P(M) into a metric space.



a. K-Ks subspace NC (Cont.)

Comparison:

Block code

Subspace NC

Code C CcFN C C P(FV)
Codeword T vector X vector space
Metric d(x,y) Hamming d(U, V)




a.—b. Why dgeneralize?

Some questions on Koetter-Kschischang's subspace NC frame-
WOrK:

1. What is the meaning of injecting vector spaces?

2. Really no assumption on delayness and cyclicity?

3. Is the model Y = H,(X) @& E sensible?



a.—b. 1. What is the meaning of injecting vector spaces?

Let X be a space injected using its generators {mq,...,mn}
(dimX < n). Since the network is noncoherent, the matrix G
may or may not be of full rank.
If G has full rank, ¥ = X

—— NO problem.
If G has deficient rank, dim(Y) < min(rank(G),dim(X))

— even different injection order affects dim(Y'), i.e., d(Y, X)
varies.
Note: In no error case
dY,X)=dim(Y + X)) —dim(YNX) =dimX —dimY.

One needs to address the relationship between allowable rank
loss (“erasure’”) and de when designing a code C.



a.—b. 2. No assumption needed on delayness and cyclicity?

We adopt the assumptions:

e If no delays, we do not allow cycles.

e Cycles must come with delays.

c.f., theory of convolutional codes.



a.—b. 3. Is the model ¥ = H.(X) & E sensible?

Let mq,...,mp be the inputs which generates X.
The observable outputs are ¢,,...,¢., where

T
€é=€i+€i, ;e X
and ¢; represents the error (maybe 0). Y is generated by {¢.}.

X =F(m1,...,mn),
Y =FW,...,00)=F(1+e1,...,0 + €r).

It may happen that dmY "X =0 or £k =0, hence Y = F.
Do we really want to model “error” and “erasure’” in this way?

[Certainly we think there are better interpretations.]
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b. Generalization.

Ingredients:

M a finitely generated free R module with R a principal ideal
domain.

“finitely generated free": M ~ RN

“domain”: a-b=0in Rimpliesa=0o0orb=20

“ideal”: I C R is an ideal if I is a subring and that z € I implies
a-z €&l for all a € R.

“subring”: I is a subring if a—b & I for all a,b € I.

Examples of (M, R): (FY,F) < acyclic networks with no delay.
(ZN, )

(F[z]¥,F[z]) +— acyclic networks with delays.

(F[(2)]VV,F[(2)]) +— cyclic networks with delays (Li-Sun).

(Alz; o],F[z]) «— cyclic convolutional codes.
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b. Generalization. (Cont.)

Admissible codewords:
P(M) collection of all saturated submodules in M.

A code C is a subset of P(M).

“saturated”: X is a saturated submodule of M if
Ofa-xze X =xeX.
Equivalent def.: if X & J = M for some J C M.

d a metric on P(M):
d(X,Y) :=rank(X) + rank(yY) —2-rank(XNY)
(can prove)=rank(X +Y) —rank(X NY).

“rank(X)" is the cardinality of a basis of X.
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b. Our answers

Let mq,...,mn generate X (INPUT).

Observable outputs are ¢/,...,¢, that generate Y (OUTPUT).
lh = 0; + ¢, here ¢, € X, ¢; is error.

Let YO e R(ﬁl, “ . ,£r> and E = R(El, e ooy E'r').

If all ¢, =0 (no errors), then Y =Yy C X.
In other cases, Y C Yy + E.

“rank loss” = rank(X) — rank(Yp)
“error’” = rank(E).

Theorem. Let C be a code with minimal distance do. Then
rank loss 4+ 2 - error < dg/2 implies d(Y, X) < d¢/2.
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c. Cyclic convolutional codes and NC

Let R = F[z] a polynomial ring.
M = Alz;0] a skew polynomial ring which is also a f.g. free
module over R.

A=TFx---xF (N-copies), A has primitive idempotentseq,...,epn.
A= ]Fel —|— s —|— FeN. [If you like, you may think of e; = (1,0,...).]

oc.A— A automorphism which fixes F such that
o(e;) = e;41 and o(ey) = eg.

Elements in M are polynomials
ag+ar1z+ ...+ asz®.

Multiplication of z follows the rule: za = o(a)z.
Hence z(ag + a1z 4+ ... +asz®) = o(ag)z + ...+ o(as)z5T1.
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c. Cyclic convolutional codes and NC (Cont.)

Some facts:
. M~ RN,
- All elements in P(M) are called cyclic convolutional codes.
. All elements in P(M) are principal left M-ideal, i.e., X = Mg.
Rank of an element in P(M) is easily calculated, namely,
if g =go0+g1z+ ... then rank(X) = #{i| goe; # 0}
- d(X,Y) easily estimated, thus ease code design.
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Further problems

1. Exists other metrics?

[Injection metric]

2. Constructions of cyclic convolutional codes for NC?

[We have a simple construction]

3. Simulation results?
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