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Network coding and cyclic convolutional codes

Outline:

a. Introduction: Koetter-Kschischang “subspace” network cod-

ing

b. Our generalization

c. Cyclic convolutional codes and NC
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edge e1 edge e2

edge f

k(e1,f) k(e2,f)

ve1 ve2

vf = k(e1,f) · ve1 + k(e2,f) · ve2

This is a node in a network

Say, input: ve1 = (1,0,0), ve2 = (0,1,0).

The output vector vf depending on the choice of

Local encoding coefficients: k’s.
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b b b

b b b

m1m2 mn

ℓ1 ℓr

In an unknown (or random) network, without regard to the un-

derlying topology, the output ℓ’s are linear combinations of the

input vectors mi’s.
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a. K-Ks subspace NC

• Linear relation: (ℓ1, . . . , ℓr)
T = G(m1, . . . ,mn)T .

• “There is no assumption here that the network operates syn-

chronously or without delay or that the network is acyclic.”

• They proposed:

INPUT=X, a space generated by m’s,

OUTPUT=Y , a space generated by ℓ’s.
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a. K-Ks subspace NC (Cont.)

Start with a large vector space, say M = F
N .

Let P(M) be the collection of all subspaces of M .

A code C is a subset of P(M).

INPUT: X, as a set of generators of X.

OUTPUT: Y , the space generated by observable outputs ℓ’s.

If there is no errors, we must have Y ⊂ X.

If there is error, they modelled it as Y = Hk(X) ⊕ E, here

k = dim(X ∩ Y ) and Hk is an operator randomly choosing a

k-dimensional subspace of X.

There is a distance concept in P(M):

d(U, V ) := dim(U + V )− dim(U ∩ V ),

d makes P(M) into a metric space.
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a. K-Ks subspace NC (Cont.)

Comparison:

Block code Subspace NC

Code C ⊂ F
N C ⊂ P(FN)

Codeword x vector X vector space

Metric d(x, y) Hamming d(U, V )
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a.→b. Why generalize?

Some questions on Koetter-Kschischang’s subspace NC frame-

work:

1. What is the meaning of injecting vector spaces?

2. Really no assumption on delayness and cyclicity?

3. Is the model Y = Hk(X)⊕E sensible?
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a.→b. 1. What is the meaning of injecting vector spaces?

Let X be a space injected using its generators {m1, . . . ,mn}

(dimX ≤ n). Since the network is noncoherent, the matrix G

may or may not be of full rank.

If G has full rank, Y = X

−→ no problem.

If G has deficient rank, dim(Y ) ≤ min(rank(G),dim(X))

−→ even different injection order affects dim(Y ), i.e., d(Y,X)

varies.

Note: in no error case

d(Y,X) = dim(Y +X)− dim(Y ∩X) = dimX − dimY .

One needs to address the relationship between allowable rank

loss (“erasure”) and dC when designing a code C.
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a.→b. 2. No assumption needed on delayness and cyclicity?

We adopt the assumptions:

• If no delays, we do not allow cycles.

• Cycles must come with delays.

c.f., theory of convolutional codes.
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a.→b. 3. Is the model Y = Hk(X)⊕ E sensible?

Let m1, . . . ,mn be the inputs which generates X.

The observable outputs are ℓ′1, . . . , ℓ
′
r, where

ℓ′i = ℓi + ǫi , ℓi ∈ X

and ǫi represents the error (maybe 0). Y is generated by {ℓ′i}.

X = F(m1, . . . ,mn),

Y = F(ℓ′1, . . . , ℓ
′
r) = F(ℓ1 + ǫ1, . . . , ℓr + ǫr).

It may happen that dimY ∩X = 0 or k = 0, hence Y = E.

Do we really want to model “error” and “erasure” in this way?

[Certainly we think there are better interpretations.]
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b. Generalization.

Ingredients:

M a finitely generated free R module with R a principal ideal

domain.

“finitely generated free”: M ≈ RN

“domain”: a · b = 0 in R implies a = 0 or b = 0

“ideal”: I ⊂ R is an ideal if I is a subring and that z ∈ I implies

a · z ∈ I for all a ∈ R.

“subring”: I is a subring if a− b ∈ I for all a, b ∈ I.

Examples of (M,R): (FN ,F) ← acyclic networks with no delay.

(ZN ,Z)
(F[z]N ,F[z]) ←− acyclic networks with delays.

(F[(z)]N ,F[(z)]) ←− cyclic networks with delays (Li-Sun).

(A[z;σ],F[z]) ←− cyclic convolutional codes.
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b. Generalization. (Cont.)

Admissible codewords:

P(M) collection of all saturated submodules in M .

A code C is a subset of P(M).

“saturated”: X is a saturated submodule of M if

0 6= a · x ∈ X ⇒ x ∈ X.

Equivalent def.: if X ⊕ J = M for some J ⊂M .

d a metric on P(M):

d(X, Y ) := rank(X) + rank(Y )− 2 · rank(X ∩ Y )

(can prove)= rank(X + Y )− rank(X ∩ Y ).

“rank(X)” is the cardinality of a basis of X.
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b. Our answers

Let m1, . . . ,mn generate X (INPUT).

Observable outputs are ℓ′1, . . . , ℓ
′
r that generate Y (OUTPUT).

ℓ′i = ℓi + ǫi, here ℓi ∈ X, ǫi is error.

Let Y0 := R(ℓ1, . . . , ℓr) and E = R(ǫ1, . . . , ǫr).

If all ǫi = 0 (no errors), then Y = Y0 ⊂ X.

In other cases, Y ⊂ Y0 + E.

“rank loss”= rank(X)− rank(Y0)

“error”= rank(E).

Theorem. Let C be a code with minimal distance dC. Then

rank loss + 2 · error < dC/2 implies d(Y,X) < dC/2.
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c. Cyclic convolutional codes and NC

Let R = F[z] a polynomial ring.

M = A[z;σ] a skew polynomial ring which is also a f.g. free

module over R.

A = F×· · ·×F (N-copies), A has primitive idempotents e1, . . . , eN .

A = Fe1 + · · ·+ FeN . [If you like, you may think of e1 = (1,0, . . .).]

σ : A→ A automorphism which fixes F such that

σ(ei) = ei+1 and σ(eN) = e1.

Elements in M are polynomials

a0 + a1z + . . .+ aszs.

Multiplication of z follows the rule: za = σ(a)z.
Hence z(a0 + a1z + . . .+ aszs) = σ(a0)z + . . .+ σ(as)zs+1.
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c. Cyclic convolutional codes and NC (Cont.)

Some facts:

· M ≈ RN .

· All elements in P(M) are called cyclic convolutional codes.

· All elements in P(M) are principal left M-ideal, i.e., X = Mg.

· Rank of an element in P(M) is easily calculated, namely,

if g = g0 + g1z + . . . then rank(X) = #{i| g0ei 6= 0}

· d(X, Y ) easily estimated, thus ease code design.
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Further problems

1. Exists other metrics?

[Injection metric]

2. Constructions of cyclic convolutional codes for NC?

[We have a simple construction]

3. Simulation results?
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